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Abstract: The microscopic validity of linear free energy relationships for adiabatic reactions in solutions is examined 
using computer simulation methods and realistic potential surfaces. The simulations consider hydride transfer reactions 
within a class of NAD+ analogues. The potential surfaces of the reacting systems are evaluated by the empirical 
valence bond approach and the corresponding diabatic and adiabatic free energy functions are calculated by a free 
energy perturbation/umbrella-sampling approach. Quantum mechanical corrections of the activation energies are 
evaluated by the quantized classical path method. It is demonstrated that a single adjustable parameter that scales 
the off-diagonal valence bond mixing term reproduces the observed linear free energy relationship with a fully 
microscopic approach without assuming a priori any Marcus-like relationship. Interestingly, the calculated solvent 
reorganization energies are quite different than those deduced by phenomenological approaches. This reflects the 
contribution of the solute reorganization energy, the coupling between the diabatic states of the solute, and the effect 
of quantum mechanical nuclear factors. The present study demonstrates the effectiveness of the empirical valence 
bond approach for studies of chemical processes in solutions as well as the insight provided by applying the valence 
bond description to chemical processes in general. 

1. Introduction 

Computer modeling of the energetics and dynamics of 
chemical reactions in solutions and proteins recently has become 
a field of intense activity (see, for example, refs 1 — 12). The 
advances in computer power and simulation methods have made 
it possible to examine fundamental concepts of physical organic 
chemistry including the microscopic basis of linear free energy 
relationships (LFER) in solution and in protein active sites.Ial3 

It has been demonstrated, for example, that the solvent contribu­
tion to the free energy functions for electron transfer (ET) 
reactions can be described by quadratic functions.14-16 This 
provided a strong support for the validity of the Marcus 
relationship17 at a microscopic level. The validity of LFER for 
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adiabatic reactions such as proton transfer (PT), hydride transfer 
(HT), and other processes has also been examined in a 
preliminary way.1,51318 Yet in view of the important rule of 
LFER in the description of chemical and biological processes 
(e.g., refs 13 and 19—22) it is important to examine the validity 
of such relationships in classes of closely related adiabatic 
reactions. It is important to find out how LFER parameters 
that are deduced in a phenomenological way from the Marcus 
formula are related to the corresponding microscopic parameter. 
It is also important to assess the contribution of quantum 
mechanical nuclear effects to the observed LFER. The evalu­
ation of such effects can be of particular importance for 
microscopic analysis of LFER parameters for processes that 
involve a transfer of light atoms or ions. 

The evaluation of quantum mechanical rate constants for 
chemical reactions in solution is far from being trivial. While 
simulations of quantum mechanical corrections for diabatic 
processes such as electron transfer (ET) reactions can be 
accomplished by well-established methods,14d'23,2425 the treat­
ment of such effects in adiabatic reactions presents a major 
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computational challenge. Encouraging progress has been made 
in recent years in studies of adiabatic reactions.26-31 This 
includes studies of PT28,30 and HT29 reactions in solution by 
path integral methods and other approaches. It is still not clear, 
however, how accurate the available methods are. The accuracy 
problem can be addressed by performing simulations of HT and 
PT reactions on series of molecules in solution and by 
comparing the calculated and observed rate constants. 

An interesting test case has been provided by the systematic 
work of Kreevoy and co-workers,32 who studied hydride transfer 
reactions in a family of NAD+ analogues. This class of 
reactions is the subject of the present work which uses the 
empirical valence bond (EVB) method1 a 5 to describe the 
energetics of the HT reactions. This is done by evaluating the 
classical free energy surfaces by the powerful combination of 
the EVB with a free energy perturbation/umbrella-sampling 
method.13'5 The quantum mechanical corrections to the classical 
rate constant are evaluated by our recently developed quantized 
classical path (QCP) method.30 This method was already used 
in studies of HT and PT in solutions and proteins1328-30 but 
has not been subjected to a systematic examination using a 
benchmark of a series of related reactions. 

The present study evaluates the solute and solvent reorganiza­
tion energies (As and A8, respectively) and indicates that the A8 

obtained by the phenomenological approach is quite different 
than the corresponding microscopic parameter. More impor­
tantly, perhaps, we demonstrate that the As and A8 obtained from 
microscopic simulation and the corresponding quantum me­
chanical nuclear corrections can reproduce the observed LFER 
for a series of six reactions with a single adjustable parameter 
that determines the off-diagonal matrix element. 

In Section 2 we describe our theoretical approach. The 
corresponding results are described in Section 3 and the 
significance of our finding is discussed in Section 4. 

2. Methods 

A reliable modeling of the energetics and dynamics of HT reactions 
in solution is far from trivial. Several hybrid quantum/classical methods 
can provide useful strategies,1-12 but at present we believe that the EVB 
approach offers the best option in particular when one is interested in 
relating the simulations to observed LFER for a series of reactions and 
in obtaining clear physical interpretation to the effect of the solvent on 
such relationships. In our specific case we would like to consider HT 
reactions in the series of molecules listed in Figure 1. The EVB method 
describes such systems in terms of their most important resonance 
structures (RS's). For example, in the case of HT between molecule 
1 and 2, we can describe the system in terms of the resonance structures 
of Figure 2a. These involve a relatively large number of combinations 
of the donor and acceptor RS's (e.g. (a + e), (a + f). (b + e), (b + f), 
(c + e), (c + f) for the RS's that contribute most to the reactant region 
of the potential surface). However, one can use a much smaller set of 
effective diabatic configurations by projecting all the RS's of the system 
on a subspace that reflects the asymptotic properties of the product 
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Hydride Acceptors (Oxidant) 

CH2C6H5 CHj 

Hydride Donors (Reductant) 

CHj C H J C 6 H J 

6 7 
Figure 1. The molecules involved in the hydride transfer reactions. 

and reactant states (see Appendix of ref 33). Thus, we can represent 
the main chemical aspects of our system by constructing the two 
configurations of Figure 2b from the RS's of Figure 2a, where the first 
configuration represents the lowest energy eigenvectors obtained by 
mixing all the RS's that represent the reactant region while the second 
represents the lowest energy eigenvector by mixing the RS's that 
describe the product state. The effective Hamiltonian of the system 
of Figure 2b in the gas phase is now described by 

Hn = AM(̂ 1) + V 2 X O ^ - C ) 2 + 
m 

' Z 2 X C ( ^ - C ) 2 + **i<*i - Xo)2 + V& + ^ + a, (1) 
m 

H22 = AM(b2) + V25X>L2) " C ) 2 + 
m 

V 2 ^ O C - C ) 2 + *W*2 - X0)
2 + v& + v£ + a2 

m 

where AM(bm) denotes a Morse potential (relative to its minimum for 
the bond m in the fth resonance structure). The bm, 6m, and %m terms 
are the bond, angle, and out-of-plane bending contributions, respec­
tively. The bond lengths involved directly in the reaction {b\ and £>2) 
are defined in Figure 2b. %\ ar,d Xi are respectively the out-of-plane 
angles of the donor and acceptor carbon (the corresponding terms appear 
when the given carbon is in sp2 hybridization). VQQ is the Coulombic 
interaction between the charges for resonance structure i, and V^ is 
the nonbonded interaction between the atoms of this resonance structure. 
The distance n is also defined in Figure 2b. The parameters used for 
the different terms (except the a's) in Hn and //22 are the same 
parameters used in ref 18. 

The EVB Hamiltonian for the system in solution is given by15 

Hu = Hu + VSs + Vss (2) 

H12 = Hn 

where Vss represents the interaction potential between the solute (S) 
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Reactant 
Region 

Reactant 
Region 

Figure 2. (a) The relevant resonance structure involved in the description of reaction 1. (b) The effective two-resonance structures that are used 
to describe the energetics of reaction 1. The same type of structures are used in all other reactions. 

and the solvent (s) while Vss represents the interaction between the 
solvent molecules (see ref 5 for details). The potential functions and 
parameters used for the solute—solvent and solvent—solvent interaction 
terms are the standard parameters of the ENZYMIX program.34 

In principle, one can obtain the gas-phase matrix elements by VB 
ab initio treatments (e.g., ref 35). Another approach is to perform MO 
based ab initio calculations for several points along the reaction 
coordinate in the gas phase and then to adjust Hj and Hu so that the 
calculated ground state obtained from diagonahzing the EVB gas-phase 
Hamiltonian reproduces the ab initio energy surface (see refs 5 and 36 
for examples). However, here and in many other cases, we prefer to 
accomplish this task by using information about the reaction in solution. 
In particular it is very useful to obtain the gas-phase-shift parameters 
(the a;) by using the observed AG° for the solution reaction together 
with the calculated solvation free energies of the reacting fragments at 
infinite separation (see refs 1 and 5). This is done in our specific case 
by adjusting (a.2 -(Xi) until the calculated and observed values of AG0 

coincide (see Results section). The determination of the a; from the 
experimental information about the isolated fragments in solution is in 
fact equivalent to recalibration or examination of the asymptotic 
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energies, which is an essential step of any other sensible quantum 
mechanical approach, except that the EVB provides a natural way for 
this calibration. Once the calibrated a ' s are obtained we are left with 
the need to evaluate H\2. As pointed out above, this can be done by 
gas-phase ab initio calculations but in the present work we will consider 
Hi2 as the only truly adjustable parameter in our treatment (using, 
however, a single functional form for the Hn of all reactions 
considered). It is hoped that combining this approach with the 
corresponding quantum mechanical corrections to the rate constants 
will allow us to account for the observed LFER. This should amount 
to a reproduction of the observed experimental results using A5 and As 
that are determined by a first principle microscopic approach rather 
than deducing these parameters in a phenomenological way. 

The evaluation of the free energy functions and the corresponding 
reorganization energies is accomplished in a straightforward way by 
the EVB formulation. This is done by the previously developed FEP/ 
umbrella-sampling method.5 This model uses a mapping potential of 
the form1' 

vm = Hua - ej + H22em (3) 

where the change of 6m from zero to one drives the system from the 
reactant to the product state. The classical free energy function is given 
byLS 
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exp{-*(X)0} = exp{-AG(0J/?} x 
(6(X - X') exp{-(Vg - VJ/3}\m (4) 

here /J = (kBT)~l (k& is the Boltzmann constant), and AG(0m) is the 
free energy associated with changing 6 from zero to 6m evaluated by 
a standard FEP approach.1-5 8m is the 6 that forces the system to spend 
most time near the given X'. Vg is the adiabatic ground state obtained 
by solving the secular equation HC = VgC, and X is the hypersurface 
of constant energy gap between the diabatic surface, i.e., X' = Hn — 
H]] = constant. < )vm designates an average over trajectories with the 
mapping potential Vm. 

In addition to evaluating Ag(X) one can obtain the probability of 
being at the given X on Hu or Hn. The corresponding free energy 
functions are given by15 

exp{-g,0)/3} = exp{-AG(0m)/3} x 

(6(X - X') OtPi-(H11 - VJf]}\m (5) 

With the calculated g, gt, and gi, we can describe each reaction using 
diagrams of the type depicted in Figure 3. This type of diagram can 
be used to obtain the reorganization energy (X), which is given by the 
energy released upon placing the system on the potential surface of 
state 2, with the equilibrium coordinates of state 1, and then letting it 
relax to the equilibrium coordinates of state 2. This reorganization 
energy is depicted schematically in Figure 3. This figure also describes 
the diabatic activation energy, Ag*, obtained by gi(X*) - g^X^) and 
the adiabatic activation free energy obtained from the difference 
between the maximum of the g curve and its minimum at the reactant 
region. Using the calculated Ag* we can calculate the classical rate 
constant, using5 

kcl = F(kBT/h)exp{-Agtp} (6) 

where F is the transmission factor obtained by running downhill 
trajectories from the transition state (see ref 5). Here, however, we 
assume that F is close to 1, which is a reasonable approximation in 
cases of large Ag*.u 

In order to evaluate the quantum mechanical rate constant we use 
the approximation (see refs 26 and 27) 

q̂u = *ci exp{-AAgcl_qu/3} (7) 

where AAgcl_qu is the difference between the quantum and classical 
activation free energy. Our approach for evaluation of AAg* is based 
on the recently developed quantized classical path (QCP) approach. 
This approach evaluates the quantum mechanical activation energy by 
propagating trajectories of the classical particles and using these 
trajectories to generate the centroid positions for the quantum mechan­
ical partition function. This treatment is based on the finding30 that 
the quantum mechanical partition function can be expressed as 

Zqu = Zcl exp 
L p k 

,(V(Jt4) - V(X)) (8) 
fp/V 

where V is the given potential surface and each classical particle is 
represented by p quasiparticles with coordinates (x\, x%,... xp) and x is 
the center of gravity (centroid) of these particles. ()tp designates an 
average over the free particle distribution constrained at x while ()y 
designates an average over classical trajectories on the potential V. Using 
eq 8, one can express the quantum mechanical free energy surface2930 

by 

exp{-Ag(X)qu8} = exp{-AG(0m)c^} x 

6(X-X) exp. f©I<w-w>})Jv (9) 

where X designates the hypersurface of constant energy gap between 
the diabatic surfaces, i.e., X = H2i(x) — Hn(S) = constant. Vn is die 
mapping potential of eq 3 and V6 is the adiabatic ground state potential. 

g, \ 

/ S . 

AG" 

Reaction Coordinate (X = H21- Hn) 

Figure 3. Schematic description of the relationship between the diabatic 
and adiabatic free energy functions and the corresponding activation 
energies and reorganization energies. 

Table 1. Reactions Studied in the Present Work 

reaction no. donor acceptor 

5qu 

the maximum and minimum of the Ag(X)qu curve. Our treatment is 
related to the centroid formulation of Gillan26 and Voth et al.27 but it 
uses classical trajectories as an effective and convenient way for 
evaluation of the quantized Ag(X). More specifically, centroid simula­
tions evaluate trajectories of then x p quasiparticles (where n is the 
number of classical coordinates) and collect the contribution to the 
quantum activation energy wherever the X(x) coincide with the specific 
value of the reaction coordinate X. On the other hand, the QCP method 
evaluates the trajectories of the classical particles under the potential 
Vm and then obtains the quantum average of eq 9 by integrating the 
motion of the quasiparticles, considering only the effect of the free 
particle potential. This treatment does not require evaluation of forces 
6VJ6xk during the quantum calculations. Furthermore, thefp average 
can be performed in larger time intervals than that needed by the 
classical trajectories. The QCP approach has been used before in studies 
of model systems30 and in actual simulation of proton transfer and 
hydrid transfer reactions in solutions and proteins.1329,30 

3. Results 

Using the methods described above, we perform simulation 
studies of the hydride transfer reactions listed in Table 1. The 
simulations were done using the program ENZYMDC34 with the 
surface constrained all atom solvent (SCAAS) spherical bound­
ary conditions. This involved a construction of a water sphere 
of 10 A radius (with about 120 water molecules around the 
reacting molecules and special radial and polarization boundary 
conditions.34 The hydride-acceptor atom was constrained to the 
center of the solvent sphere and the distance between the 
hydride-donor and hydride-acceptor atoms was constrained to 
3.0 A with a weak quadratic function (V = 10(7-3 — r°)2 kcal 
mol~' A - 2) . The calculations were done without any interaction 
cutoff between the molecules within the simulation sphere. The 
FEP/umbrella-sampling simulations were done with 11 simula­
tion steps, changing 0m of eq 3 from 0 to 1 in equal increments 
of 0.1. Each step involved a 4 ps molecular dynamic simulation 
with time steps of 1 fs at a temperature of 300 K. The 
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(a) 
Reaction 1 (-0.20, 59.32) (S + s) Reaction 2 (-1.84, 57.17) (S +s) 

O 
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"Sb 
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AE(kcal/mol) 
Reaction 1 (-0.20, 8.32) (s) 

(b) 
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80 

bO 

40 
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TW A +—W* 
VW A JF 

• . — i . 

-60 -40 -20 0 20 40 60 

AE(kcal/mol) 
Figure 4. (a) The total (solute + solvent) free energy functions for 
reaction 1. The minima of the functions are set so that they reproduce 
the observed AG0 and this is equivalent to finding the correct value of 
a.2 — (Xi. The numbers in parentheses designate respectively the AG0 

and Ag* obtained from the given free energy functions, (b) The solvent 
contributions for the free energy functions of reaction 1. The minima 
of the functions are set in a way that reproduces the observed AG0. 

simulations were repeated at five independent sets of initial 
conditions and the corresponding results were averaged over 
these runs. This averaging procedure has been found to be much 
more effective than running a single long trajectory (see ref 
37). The parameters used for the simulation are considered in 
the Methods section except that the values of a.2 — oti and Hn 
will be considered below. 

Using the above simulation procedure we evaluated the 
classical free energy functions for our series of six hydride 
transfer reactions. The evaluation of those functions involved 
the collection of the data points for the gi(X) of eq 5 and the 
fitting of a polynomial to these points (e.g., see Figure 4) to 
obtain the analytical description of the given function (see ref 
14 for a related procedure). The different free energy functions 
were evaluated with and without the solute contribution (Figures 
4—9). The corresponding reorganization energies for both the 
solute + solvent (As+S) and solvent (As) were determined in each 
case from the difference between the value of the free energy 
function of the product state at the minimum of the free energy 
function of the reactant state and the value of the product free 
energy function at its own minimum (see Figure 3 and the 
discussion in the Methods section). The values of the calculated 
reorganization energies for the six reactions are summarized in 
Table 2. It might be useful to point out that the calculations 
appear to provide quite reliable estimates of the solvent 
reorganization energies (we estimate the convergence error to 
be around ±2 kcal/mol). This is of significant importance since 
one cannot expect to have the same reorganization energies for 

(37) Lee, F. S.; Warshel, A. J. Chem. Phys. 1992, 97, 3100. 
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AE(kcal/mol) 

Reaction 2 (-1.84, 7.17) (s) 

O 
S 

U 
M 
"Sb 
< 

AE(kcal/mol) 
Figure 5. (a) The total (solute + solvent) free energy functions for 
reaction 2. Notation and procedure as in Figure 4. (b) The solvent 
contributions for the free energy functions of reaction 2. 

all the reactions studied32 and it is hard to evaluate the relevant 
parameters in a unique way using experimental information. 
Thus the present study as well as earlier studies14-16 demonstrate 
the great value of computer simulation approaches in the 
determination of reorganization energies. 

After evaluating the shapes of the free energy functions for 
each reaction, we determined their relative heights by selecting 
the value of 012 — cu that forces the difference between the 
minima of the product and reactant free energy functions to 
reproduce the observed AG0 (see Figure 3). This procedure 
provides a unique calibration of 0C2 — ai that allows one to 
determine the diabatic activation free energy, Ag^, from the 
intersection of the reactant and product free energy functions 
(see Figure 3), although a somewhat improved estimate can be 
obtained when the value of (X2 — (Xi is adjusted so that the 
calculated adiabatic AG0 reproduces the corresponding observed 
value, but in the present case the two procedures give similar 
results. The calculated values of the diabatic free energies are 
summarized in Table 3. These values allow us to examine 
whether the calculated free energy curves can be approximated 
by quadratic functions. This is done here by comparing the 
values of the diabatic free energies, Agd, to the corresponding 
approximated values obtained by the Marcus formula 

A£d.M = 
(AG° + kf 

Ak 
(10) 

where d and M designate diabatic and Marcus, respectively. 
The analysis presented in Table 3 and Figure 10 indicates that 
Ag6 M provides an excellent approximation for Agd. Since eq 
10 is simply the result obtained from the intersection of two 
harmonic functions with equal curvature, we conclude that the 
calculated free energy functions can be approximated by 
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Figure 6. (a) The total (solute + solvent) free energy functions for 
reaction 3. Notation and procedure as in Figure 4. (b) The solvent 
contributions for the free energy functions for reaction 3. 

harmonic functions (this is also evident from the polynomial 
fitting procedure) and that our system follows the linear response 
approximation for both the solvent and the combined solute + 
solvent contributions. 

After analyzing the diabatic free energy functions we 
examined the adiabatic free energy functions and the corre­
sponding activation free energies. This step of our analysis 
involves the evaluation of the classical and quantum mechanical 
adiabatic free energies for different assumed values of the 
parameters A and /u in the Hi 2 of eq 1. The classical adiabatic 
free energy functions were evaluated in the same simulations 
used for the determination of the g,- using, however, eq 4 instead 
of eq 5. The quantum mechanical free energy functions were 
determined using the quantized classical path (QCP) approach. 
The simulations involved mapping steps of 10 ps each. The 
classical trajectory was propagated with 1 fs time steps and the 
quantum average over the free particle potential was done once 
in every 10 fs. The quantum calculation used 40 quasiparticles 
(p = 40 in eq 8) for each of the EVB quantum atoms. The 
propagation of the quasiparticle was done as in ref 30 using 
Langevin dynamics. Typical results of these simulations is 
presented in Figure 11. 

The process of optimizing Hn was guided by using a 
modified Marcus relationship1,5 (see also Figure 3) 

Ag* = Ag* - AAg* u s (A + AG°)2/4A -

(H12(X*) - H2
2(X0)/(A + AG0)} - AAg* (11) 

where X* and Xo are respectively the maximum and minimum 
of the free energy function of the reactant state. Using the 
average value of the calculated I and the observed Ag* and 
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Figure 7. (a) The total (solute + solvent) free energy functions for 
reaction 4. Notation and procedure as in Figure 4. (b) The solvent 
contributions for the free energy functions for reaction 4. 

AG° we obtain 

H12(X*) - H]2(X0)I(X + AG0) 

AAg*,_qu = 29 kcal/mol (12) 

The parameters A and ft in Hi2 were optimized by trying to 
satisfy eq 12. The optimal H]2 was found to be 

Hn(^) = 150 exp{-0.5r 3} kcal/mol (13) 

With this H12 we obtained AAgcl—qu = —5.9 kcal/mol for 
reaction 1 (see Figure 11) and a similar value for reaction 2. 
This and the average value of ls+s (i-e. As+s — 236 kcal/mol), 
as well as Hi2(X

0) = Hn(r\ = 3.0) = 33.5 kcal/mol and 
Hi2(X*) = H,2(r3=2.75) = 37.9 (where r° and r* are the 
average values of r^ at X0 and X*, respectively), satisfy eq 12. 
As is seen from Figure 10 we obtained a good agreement 
between the calculated and observed Ag* using the single Hi2 

of eq 12. 

4. Concluding Remarks 

This work has examined the molecular basis for the observed 
LFER for HT reactions in solutions, using microscopic simula­
tion methods. It was demonstrated that the free energy functions 
can be approximated by harmonic functions and that this linear 
response approximation is valid not only for the solvent 
contribution but also for the solute contribution. 

The fact that the free energy functions are harmonic indicates 
that the LFER of the given class of reactions can be described 
by the modified Marcus relationship of eq 11. Yet, in contrast 
to the case of electron transfer and other diabatic reactions, it 
is hard to deduce the relevant reorganization energies by 
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Figure 8. (a) The total (solute + solvent) free energy functions for 
reaction 5. Notation and procedure as in Figure 4. (b) The solvent 
contributions for the free energy functions for reaction 5. 

phenomenological procedures. In fact, the As obtained by the 
simulations (As = 33 kcal/mol) is much smaller than the 
empirical value obtained by fitting the diabatic Marcus relation­
ship to the observed LFER (Aflt = 80). This reflects the 
important contribution of the solute reorganization energy. It is 
also important to note that the total reorganization energy 
obtained by the present treatment (A «* 236 kcal/mol) is much 
larger than the phenomenological A. This discrepancy is due 
to the effect of Hn and the quantum mechanical correction. 
That is, the contributions of Hn and AgQ\—qu reduce Ag* by 
about 40 kcal/mol, thus decreasing the apparent A by 4 x 40 = 
160 kcal/mol, and bringing it to 76 kcal/mol, in good agreement 
with the phenomenologically deduced A. 

The present study evaluated the quantum mechanical cor­
rection to the rate constant of a hydride transfer reaction in 
solution using realistic potential surfaces and the QCP approach. 
Another variant of this approach has been used in preliminary 
studies of isotope effects of hydride transfer reaction in the 
enzyme LDH.29 These studies have demonstrated the effective­
ness of the QCP method in simulations of hydride transfer 
reactions in condensed phases but have not established the 
reliability of this method. More systematic studies (which are 
left to subsequent works) will require evaluations of isotope 
effects in hydride transfer between NAD+ analogues and 
comparison to the corresponding calculated and observed results. 
In particular, it would be interesting to analyze the observed 
solvent effect on this class of reactions.38 It would also be 
interesting to refine #12 using gas phase ab initio calculations 
and to reexamine the absolute value of Agcl— , as well as the 
relationship between the EVB results obtained with realistic 

(38) Kreevoy, M. M.; Kotchevar, A. T. J. Am. Chem. Soc. 1990, 112, 
3579. 
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Figure 9. (a) The total (solute + solvent) free energy functions for 
reaction 6. Notation and procedure as in Figure 4. (b) The solvent 
contributions for the free energy functions for reaction 6. 

Table 2. Calculated A's and the Corresponding Observed AG°'s 

reaction no. 

1 
2 
3 
4 
5 
6 

As+s 

237.6 
232.4 
237.6 
235.8 
237.1 
239.0 

A5 

33.7 
32.9 
32.3 
33.9 
34.3 
35.9 

AG0 

-0.2 
-1.8 
-3.7 
-6.6 
-8.0 

-10.4 

surfaces and those obtained with more phenomenologically 
deduced potential surfaces.39 

Perhaps the most significant finding of the present work is 
the fact that a single adjustable Hn can reproduce the observed 
LFER in a series of six hydride transfer reactions and that this 
was done with a fully microscopic simulation approach without 
assuming a priori any Marcus-like relationship. This provides 
further evidence for the effectiveness of the EVB method in 
describing and analyzing chemical processes. In fact, as was 
pointed out repeatedly by us,1 the EVB does not assume any 
LFER or parabolic free energy function, but reproduces such 
behavior as a consequence of the tendency of multidimensional 
systems to satisfy the linear response approximation.14 The 
extremely useful picture provided by applying the VB repre­
sentation to chemical processes of polyatomic molecules (e.g. 
refs 1 and 40) has also been emphasized by Shaik and 
co-workers (e.g. ref 41), who used an approach which is 
conceptually similar to the EVB model but much less quantita­
tive and thus is not amenable to verification by microscopic 
simulations. 

(39) (a) Kreevoy, M. M.; Ostovic, D.; Truhlar, D. G.; Garrett, B. C. J. 
Phys. Chem. 1986, 90, 3766. (b) Kim, Y.; Truhlar, D. G.; Kreevoy, M. M. 
J. Am. Chem. Soc. 1991, 113, 7837. 

(40) Warshel, A.; Weiss, R. M. J. Am. Chem. Soc. 1980, 102, 6218. 
(41) Press, A.; Shaik, S. S. Ace. Chem. Res. 1983, 16, 363. 



Study of Hydride Transfer between NAD+ Analogues J. Am. Chem. Soc, Vol. 117, No. 23, 1995 6241 

Table 3. Activation Free Eneriges Obtained by Different Approaches" 

reaction no. 

1 
2 
3 
4 
5 
6 

A 

59.31 
57.18 
57.57 
55.72 
55.05 
54.82 

B 

8.32 
7.20 
6.34 
5.49 
4.81 
4.52 

C 

59.32 
57.17 
57.55 
55.67 
54.99 
54.74 

D 

8.32 
7.17 
6.26 
5.39 
4.64 
4.41 

E 

59.08 
58.26 
57.36 
55.92 
54.96 
54.08 

F 

8.33 
7.54 
6.70 
5.46 
4.69 
4.02 

G 

20.32 
18.18 
18.55 
16.67 
15.99 
15.74 

H 

20.07 
19.26 
18.35 
16.92 
15.96 
15.08 

/ 
19.73 
19.27 
17.52 
16.54 
16.01 
16.26 

" A, diabatic activation free energies (Agd,M*) determined by using the Marcus relationship with k%+s. B, diabatic activation free energies determined 
by using the Marcus relationship with Xs. C, diabatic activation free energies (Ag/) determined from the intersection of the free energy functions. 
D, diabatic activation free energies determined from the intersection of the solvent free energy functions. E, diabatic activation free energies (Ag*) 
determined by using the Marcus relationship with the average values of As+s/4. F, diabatic activation free energies determined by using the Marcus 
relationship with the average values of As/4. G, adiabatic activation free energies obtained by subtracting 39 kcal/mol from the corresponding Ag/ 
of column C. H, adiabatic activation free energies obtained by subtracting 39 kcal/mol from the AgM of column E. I, observed activation free 
energies. 
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Figure 10. Calculated and observed LFER for the six hydride transfer 
reactions studied in this work, (a) The LFER evaluated using the 
calculated free energy functions. The diabatic activation free energies, 
AgJ, obtained using the solute + solvent and the solvent contributions 
are designated by O and A, respectively. The adiabatic activation free 
energies, Ag*, obtained by subtracting 39 kcal/mol from the AgJ are 
designated with a + sign and compared to the corresponding observed 
values (designated by D). (b) The LFER evaluated using the Marcus 
relationship and the microscopically derived reorganization energies. 
The diabatic activation free energies, Agd, obtained from the Marcus 
relationship are designated by O and A, respectively. The adiabatic 
activation free energies, Ag*, obtained by subtracting 39 kcal/mol from 
the Agd are designated with a + sign and compared to the corre­
sponding observed values (designated by D). 

Quantitative studies of medium sized molecules in solutions 
present a major challenge. Significant progress has been made 
by phenomenological approaches but probably the only way to 
progress toward quantitative understanding is to simulate the 
detailed molecular event during the given reaction using realistic 
molecular models. Ab initio approaches can help in this respect 
by providing information about the relevant gas phase process, 

I 

60 

300 400 

AE (kcal/mol) 
Figure 11. The classical (O) and quantum mechanical (A) adiabatic 
free energy curves for reaction 1. The quantum mechanical free energy 
curve was obtained by the QCP approach. 

and in fact, such approaches have been used successfully in 
studies of hydride reactions (e.g. refs 42—44). The problem 
is, however, that we are interested in reactions in solutions and 
proteins where environmental effects must be incorporated into 
the given model. The simplest (zero-order) option would be 
to evaluate the ab initio charges at different points along the 
gas phase reaction path and to add the corresponding solvation 
energies to the gas phase energies (see for example ref 4). This 
approach does not reflect, however, the polarization of the solute 
by the solvent and can lead to quite incorrect results in studies 
of charge separation processes (see discussion in ref 5). A very 
effective option of capturing the physics of the solute polariza­
tion is provided by the EVB method. One can easily obtain an 
EVB Hamiltonian that is calibrated to reproduce the gas phase 
energy surface and charge distribution. Solvating the gas state 
EVB charges will obviously reproduce the above zero-order 
results. On the other hand, solvating the diabatic states by using 
eq 2 and then mixing them (as done in the standard EVB 
procedure) will provide a model that clearly accounts for the 
main features of solvent-induced solute polarization, where 
stabilization of ionic states increase their contribution to the 
ground state charge distribution. Such a model would reproduce 
the exact results at the asymptotic regions (which is not 
necessarily the case for the zero-order model and for MO models 
without a configuration interaction treatment). In the non-
asymptotic region the model can be further refined by calibrating 
it to reproduce the response of the gas phase charges to external 
fields. Thus the EVB method provides what is perhaps the most 

(42) Wu, Y.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 906. 
(43) Wu, Y.; Houk, K. N. J. Am. Chem. Soc. 1987, 709, 2226. 
(44) Tapia, O.; Andres, J.; Aullo, J. M.; Branden, C. I. J. Chem. Phys. 

1985, 83. 
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effective way of interpolating gas phase ab initio results in 
physically meaningful calculations of solution reactions. In 
cases where the ab initio results are not reliable enough one 
may use results from solution experiments and calculated 
solvation energies to calibrate the gas phase Hamiltonian. Of 
course, eventually one will be able to obtain reliable results for 
solution reactions using well-calibrated hybrid ab w/rio/classical 
methods, but the simple physical picture of the EVB would still 
be very useful in analyzing the trend in activation energies and 
their quantum mechanical corrections as well as in understanding 
the effect of the solvent on these properties. For example, one 
can use the EVB and QCP approaches in analyzing the observed 

effect of solvents with different dielectric relaxation time on 
the isotope effect of hydride transfer reactions.38 

Finally, considering the fact that the present study has 
demonstrated the ability of the EVB method to reproduce 
quantitatively the observed trend in hydride transfer reactions 
in solution, it seems reasonable to assume that this method 
should give reliable results in studies of hydride transfer 
reactions in enzymes. 
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